Problemami związanymi z liczbami pierwszymi ludzkość zajmuje się od starożytności. Do najbardziej znanych zagadnień należą: hipoteza liczb pierwszych bliźniaczych postawiona przez Euklidesa około 300 roku p.n.e. czy hipoteza Goldbacha z 1742 roku mówiąca, że każda liczba parzysta większa od 2 może być przedstawiona w postaci sumy dwóch liczb pierwszych. Stawianym od dawna pytaniem jest też to, czy istnieje nieskończenie wiele liczb pierwszych p takich, że 2p + 1 również jest liczbą pierwszą. Zagadnienie to zostało postawione około 1800 roku. Do najtrudniejszych kwestii w tej dziedzinie należy prawdopodobnie hipoteza Riemanna sformułowana w 1859 roku i związana z funkcją zliczającą kolejne liczby pierwsze. Czy istnieje jakiś sposób, by zweryfikować owe hipotezy, chociażby częściowo, nie wychodząc przy tym poza matematykę elementarną?